VsDebating Wiki
Register
Advertisement

This page can originally be found here on the VS Battles wiki. Credit for its creation goes entirely to them~

Destructive Capacity

Destructive Capacity is the term used to determine the amount of damage a character can produce. It is normally the deciding factor of VS matches along with Speed. It is measured in units of energy.

Attack Potency

An alternative term for Destructive Capacity which has more direct meaning: The Destructive Capacity that an attack is equivalent to. A character with a certain degree of attack potency does not necessarily need to cause destructive feats on that level, but can cause damage to characters that can withstand such forces.

We are aware that this technically violates the principle of conservation of energy, as it should logically disperse upon impact, but fiction generally tends to ignore this fact, so we overlook it as well.

Also, kindly remember that Attack Potency is the measure of Destructive Capacity of an attack, and as such, is measured via its energy damage equivalent. Hence, characters that destroy mountains or islands are not automatically mountain or island level, especially if they are small. The attack potency depends upon the energy output of the attack, not the area of effect of the attack.

Attack Potency Chart

Tier Level Energy in

Conventional Terms

Energy in Tonnes

of TNT Equivalent

Energy in Joules High End to Low End ratio
10-C Below Average ~0 Joules to

40 Joules

~0 to 9.56x10-9 ~0 to 4x101 NA
10-B Human 40 Joules to

100 Joules

9.56x10-9 to 2.39x10-8 4x101 to 102 2.5x
10-A Athlete 100 Joules to

200 Joules

2.39x10-8 to 4.78x10-8 102 to 2x102 2x
9-C Street 200 Joules to

5 Kilojoules

4.78x10-8 to 1.195x10-6 2x102 to 5x103 25x
9-B Wall 5 Kilojoules

to 0.005 Tons

1.195x10-6 to 5x10-3 5x103 to 2.092x107 4194x
9-A

Room or Small Building

0.005 Tons

to 0.25 Tons

5x10-3 to 2.5x10-1 2.092x107 to 1.046x109 50x
8-C Building 0.25 Tons

to 2 Tons

2.5x10-1 to 2 to 1.046x109 to 8.368x109 8x
High 8-C Large Building 2 Tons to

11 Tons

2 to 1.1x101 8.368x109 to 4.6024x1010 5.5x
8-B City Block 11 Tons to 100 Tons 1.1x101 to 102 4.6024x1010 to 4.184x1011 ~9.1x
8-A Multi-City Block 100 Tons to 1 Kiloton 102 to 103 4.184x1011 to 4.184x1012 10x
Low 7-C Small Town 1 Kiloton to

5.8 Kilotons

103 to 5.8x103 4.184x1012 to 2.42672x1013 5.8x
7-C Town 5.8 Kilotons to

100 Kilotons

5.8x103 to 105 2.42672x1013 to 4.184x1014 ~17.5x
High 7-C Large Town 100 Kilotons

to 1 Megaton

105 to 106 4.184x1014 to 4.184x1015 10x
Low 7-B Small City 1 Megaton to

6.3 Megatons

106 to 6.3x106 4.184x1015 to 2.63592x1016 6.3x
7-B City 6.3 Megatons

to 100 Megatons

6.3x10^6 to 108 2.63592x1016 to 4.184x1017 ~16x
7-A Large City

or Mountain

100 Megatons

to 1 Gigaton

108 to 109 4.184x1017 to 4.184x1018 10x
High 7-A Large Mountain

or Small Island

1 Gigaton to

4.3 Gigatons

109 to 4.3x109 4.184x1018 to 1.79912x1019 4.3x
6-C Island 4.3 Gigatons

to 100 Gigatons

4.3x109 to 1011 1.79912x1019 to 4.184x1020 ~23.25x
High 6-C Large Island 100 Gigatons

to 1 Teraton

1011 to 1012 4.184x1020 to 4.184x1021 10x
Low 6-B Small Country 1 Teraton to

7 Teratons

1012 to 7x1012 4.184x1021 to 2.9288x1022 7x
6-B Country 7 Teratons

to 100 Teratons

7x1012 to 1014 2.9288x1022 to 4.184x1023 14x
High 6-B Large Country

or Small Continent

100 Teratons

to 760 Teratons

1014 to 7.6x1014 4.184x1023 to 3.17984x1024 7.6x
6-A Continent 760 Teratons

to 4.435 Petatons

7.6x1014 to 4.435x1015 3.17984x1024 to 1.855604x1025 ~5.8x
High 6-A Large or

Multi-Continent

4.435 Petatons to

29.6 Exatons

4.435x1015 to 2.96x1019 1.855604x1025 to 1.24x1029 ~6674x
5-C Moon 29.6 Exatons to

433 Exatons

2.96x1019 to 4.33x1020 1.24x1029 to 1.81x1030 14.62x
Low 5-B Small Planet 433 Exatons

to 59.44 Zettatons

4.33x1020 to 5.944x1022 1.81x1030 to 2.487x1032 ~133x
5-B Planet 59.44 Zettatons

to 2.7 Yottatons

5.944x1022 to 2.7x1024 2.487x1032 to 1.13x1034 ~47x
5-A Large or

Multi-Planet

2.7 Yottatons

to 53.2 Ninatons

2.7x1024 to 5.32x1028 1.13x1034 to 2.225x1038 19690x
High 5-A Dwarf Star 53.2 Ninatons to 2.998 Tenatons 5.32x1028 to 2.998x1030 2.225x1038 to 1.254x1040 ~56.3x
Low 4-C Small Star 2.998 Tenatons

to 150 Tenatons

2.998x1030 to 1.5x1032 1.254x1040 to 6.276x1041 ~50x
4-C Star 150 Tenatons

to 350 Tenatons

1.5x1032 to 3.5x1032 6.276x1041 to 1.4644x1042 ~2.33x
High 4-C Large Star 350 Tenatons

to 22.4 Foe

3.5x1032 to 5.353x1035 1.4644x1042 to 2.24x1045 ~1530x
4-B Solar System 22.4 Foe

to 22.586 TeraFoe

5.353x1035 to 5.398x1047 2.24x1045 to 2.2586x1057 ~1.008 trillion x
4-A Multi-Solar System 22.586 TeraFoe

to 12.68 ZettaFoe

5.398x1047 to 3.03x1056 2.2586x1057 to 1.268x1066 ~561.41 million x
3-C Galaxy 12.68 ZettaFoe

to 8.168 YottaFoe

3.03x1056 to 1.95x1059 1.268x1066 to 8.162x1068 ~644x
3-B Multi-Galaxy 8.168 YottaFoe

to 7.11 TenaexaFoe

1.95x1059 to 1.699x1083 8.168x1068 to 7.11x1092 ~8.7x1023x
3-A Universe 7.11 TenaexaFoe to any higher finite number 1.699x1083 to any higher finite number 7.11x1092 to any higher finite number Not available

Explanation

Standard sizes

The values for 4-B and above are obtained from here. The calc assumes that the blast is omni-directional (spherical), as is generally the case in most fictional occurrences, and that the energy output is sufficient to destroy the entirety of the cosmic structure.

  • Solar System level: The star system known as the Solar System.
  • Multi-Solar System level: Instead of doubling the value of Solar System level, the distance between two such systems needs to be accounted for as well. A calc for energy required to destroy two solar systems was done, with the following assumptions:
    • Distance between them as the minimum distance between Sun and the next closest star, the Alpha Centauri.
    • A spherical blast, strong enough to obliterate the contents of both solar systems at the same time.
    • Hence, the value obtained is the energy required to destroy two solar systems at a realistic distance.
  • Galaxy level: The Milky Way galaxy
    • Galaxies in fiction tend to be destroyed completely, not dissociated. Hence, it is far more logical to index a common occurrence of compete obliteration instead of an obscure one like dissociation.
    • We have a different interpretation regarding black holes. Simply put, we disagree with the premise of utilization of black holes for energy outputs, primarily because black holes rarely follow any scientific logic whatsoever. To know more, continue to read here.
  • Multi-Galaxy level: Instead of doubling the value of Galaxy level, the distance between two galaxies needs to be accounted for as well. A calc for energy required to destroy two galaxies was done with the assumptions:
    • Distance between them as the minimum distance between Milky Way Galaxy and the next closest similar-sized galaxy, the Andromeda galaxy.
    • A spherical blast, strong enough to obliterate the contents of both galaxies at the same time.
    • Hence, the value obtained is the energy required to destroy two galaxies at a realistic distance.
  • Universe level: Given that the universe's actual size is unknown, we do not know the amount of energy that would be required to destroy all matter within it. As such, the bare minimum value for the observable universe was calculated as a lower border instead. Any greater finite number is also included within this tier, whereas countably infinite numbers are included under High Universe level.

Omitted levels

  • Small Moon level: While most other tiers have been into 3 sub-tiers, Moon level does not have Small Moon level due to the existence of Multi-Continent level. Simply put, the two intersect, and Multi-Continent level is far more common than Small Moon.
  • Small Galaxy level: Same reason as the one for Small Moon level, with the tier clashing with Multi-Solar System level instead.
  • Large Galaxy level: Large Galaxy level was omitted because unlike planets, galaxies in fiction rarely specify the size of said galaxy, and instead go from galaxy to multiple galaxies. As such, a "Large Galaxy level" rating would not only be confusing, but also redundant.
  • Higher Dimensional levels: These levels are not listed because they are not restricted to the same parameters for energy requirement. The energy for such levels cannot be calculated.

Additional terms

"+" symbol

This symbol has been put out of commission currently by the terms "High" and "Low", but previously was used to denote a much higher standard of a particular tier (i.e., the upper end of said tier; this could include, for instance, a 1-B vs a High 1-B; the High 1-B is infinitely more powerful and thus wins)

High

Currently used to denote high end of a particular tier. "High" will be utilized only if the instance matches with the revise Attack Potency chart.

Example: A "High 7-C" is capable of destroying a large town (High normally denotes the word "large"; Large Country, Large Star, Large Building, etc)

Low

Currently used to denote low end of a particular tier, it will here-on no longer be utilized in that manner. "Low" will be utilized only if the instance matches with the revise Attack Potency chart.

Example: A "Low 9-A" would be (in all likelihood) denoted as "Low Room level"; as in, the character can destroy a small room. It should be used sparingly as it is much more difficult to denote and does not correspond with the current attack potency chart.

"At least"

Should be used to denote the lower cap of a character, if the exact value is indeterminate.

"At most"

Should be used to denote the higher cap of a character, if the exact value is indeterminate.

"Likely"

Should be used to list a hypothetical statistic for a character, but inconclusive due to lack of feats or viable power-scaling. Probability of said hypothetical statistic should be favourable.

"Possibly"

Should be used to list a hypothetical statistic for a character, but inconclusive due to lack of feats or viable power-scaling. Probability of said hypothetical statistic should also be indeterminate.

Trivia

  • To know the equivalent prefix for a particular exponential value, please see this page.
  • The required sizes for shattered mountains, or islands, to be considered as "Mountain level", or "Island level".
  • A Foe is a unit used to measure the energy released by a supernova, and is equivalent to 1044 Joules.

See also

Mass-energy conversion feats

Black Hole feats in fiction

Other stats

Speed

Lifting Strength

Striking Strength

Durability

Advertisement